Reverse Fuzzy Extractors: Enabling Lightweight Mutual Authentication for PUF-Enabled RFIDs
نویسندگان
چکیده
RFID-based tokens are increasingly used in electronic payment and ticketing systems for mutual authentication of tickets and terminals. These systems typically use cost-effective tokens without expensive hardware protection mechanisms and are exposed to hardware attacks that copy and maliciously modify tokens. Physically Unclonable Functions (PUFs) are a promising technology to protect against such attacks by binding security critical data to the physical characteristics of the underlying hardware. However, existing PUF-based authentication schemes for RFID do not support mutual authentication, are often vulnerable to emulation and denial-of service attacks, and allow only for a limited number of authentications. In this paper, we present a new PUF-based authentication scheme that overcomes these drawbacks: it supports PUF-based mutual authentication between tokens and readers, is resistant to emulation attacks, and supports an unlimited number of authentications without requiring the reader to store a large number of PUF challenge/response pairs. In this context, we introduce reverse fuzzy extractors, a new approach to correct noise in PUF responses that allows for extremely lightweight implementations on the token. Our proof-of-concept implementation shows that our scheme is suitable for resource-constrained devices.
منابع مشابه
An Improved Ownership Transfer and Mutual Authentication for Lightweight RFID Protocols
Radio Frequency Identification (RFID) technology is an automated identification technology which is widely used to identify and track all kind of objects. However, it is a challenging task to design an authentication protocol because of the limited resource of Lightweight RFID tags. Recently, a lightweight RFID authentication protocol and an ownership transfer of RFID tags are presented by Kuls...
متن کاملRFID Security Using Lightweight Mutual Authentication And Ownership Transfer Protocol
In recent years, radio frequency identification technology has moved into the mainstream applications that help to speed up handling of manufactured goods and materials. RFID tags are divided into two classes: active and passive. Active tag requires a power source that’s why its cost is more than passive tags. However, the low-cost RFID tags are facing new challenges to security and privacy. So...
متن کاملFPGA Implementation of a Cryptographically-Secure PUF Based on Learning Parity with Noise
Herder et al. (IEEE Transactions on Dependable and Secure Computing, 2017) designed a new computational fuzzy extractor and physical unclonable function (PUF) challenge-response protocol based on the Learning Parity with Noise (LPN) problem. The protocol requires no irreversible state updates on the PUFs for security, like burning irreversible fuses, and can correct for significant measurement ...
متن کاملModeling Attack Resilient Reconfigurable Latent Obfuscation Technique for PUF based Lightweight Authentication
Physical unclonable functions (PUFs), as hardware security primitives, exploit manufacturing randomness to extract hardware instance-specific secrets. One of most popular structures is time-delay based Arbiter PUF attributing to large number of challenge response pairs (CRPs) yielded and its compact realization. However, modeling building attacks threaten most variants of APUFs that are usually...
متن کاملA Lightweight RFID Protocol Using Substring
As low-cost RFIDs with limited resources will dominate most of the RFID market, it is imperative to design lightweight RFID authentication protocols for these low-cost RFIDs. However, most of existing RFID authentication protocols either suffer from some security weaknesses or require costly operations that are not available on low-cost tags. In this paper, we analyze the security vulnerabiliti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012